Introduction to Parallel Programming Models

Tim Foley
Intel Corp
Overview

• Three models of parallelism
 – Seen in modern game engines
 – Applicable in multiple situations

• After this talk, you should be able to
 – Identify kinds of parallelism in your workloads
 – Select tools that will exploit that parallelism
What goes into a game frame?
Computation graph for Battlefiled: Bad Company provided by EA DICE
A modern game is a mix of...

- Data-parallel algorithms
A modern game is a mix of...

- Task-parallel algorithms and coordination
A modern game is a mix of...

- Standard and extended graphics pipelines

Pipeline Flow:

1. Input Assembly
2. Vertex Shading
3. Primitive Setup
4. Geometry Shading
5. Rasterization
6. Pixel Shading
7. Output Merging
Data-Parallel Task-Parallel Pipeline-Parallel
Structure of this talk

• For each of our models
 – Key idea
 – Mental model
 – Applicability

• Composition
 – How these models combine in the real world
Data Parallelism
Key Idea

• Run a single kernel over many elements

• Can exploit throughput architecture well
 – Amortize per-element cost with SIMD/SIMT
 – Hide memory latency with lightweight threads
Mental Model

- Launch N independent work items
- All running the same program code (kernel)
- Data operated on is function of $0 \leq i < N$

- Domain of computation
 - Determines number/shape of work items
 - Often based on input/output data structure
Simple Data-Parallelism

- Data structure
 - Regular array

- Kernel
  ```c
  void k(int i) {
    B[i] += A[i];
  }
  ```

- Computation domain
 - 1D interval
Simple Data-Parallelism

- **Data structure**
 - N-D array

- **Kernel**

```c
void k(int i, int j) {
    B[i,j] += A[i,j];
}
```

- **Computation domain**
 - N-D interval
Shapes need not match

- **Data structure**
 - N-D array
 - 1D array

- **Kernel**

```java
void k(int i) {
    B[i] += A[i,0] + A[i,1];
}
```

- **Computation domain**
 - 1D interval
More advanced data-parallelism

• Nested domains
 – Allow work items to communicate
 – Used for sums, scans, sorts, …

• Irregular domains
 – Nested data structures
“Flat” domains

- Flat domain exposes work-item locality
 - Scratch data is private and transient
 - Can keep in registers or caches

- May not exploit rest of memory hierarchy
 - Can’t share temporaries through cache, local memory, etc.
Nested domains

- A domain composed of smaller domains
 - Levels map to memory hierarchy
 - e.g. registers, L1$, L2$, main memory
 - Scratch memory at each level
- Allows work items to share/communicate
 - Useful for “collective” operations: sort, scan, …
 - Need barriers or other synchronization construct
Irregular Domains

• Data structure
 - “ragged” array
 - N-D array- / grid-of-lists

• Multiple possible representations
A simple representation

Count:

Offset:

Storage:
Irregular data parallelism

• Key insight: represent irregular structure as flat index and storage arrays
 – Multiple representations possible

• Allows efficient DP implementation of some irregular algorithms
 – Pay attention for examples this afternoon
Pipeline Parallelism
Key Idea

- Increase throughput by running multiple stages of an algorithm in parallel

- Exploit producer-consumer locality
 - On-chip FIFOs
 - Efficient bus between cores
GPU Pipeline (DX10)

- Pipeline of
 - Fixed-function stages
 - Programmable stages
 - Data-parallel kernels
 - Stages run in parallel
 - Even for unified cores
- Queues between stages
 - Often in HW

Diagram:
- Input Assembly
- Vertex Shading
- Primitive Setup
- Geometry Shading
- Rasterization
- Pixel Shading
- Output Merging
Why pipelines?

- **Variable rate amplification**
 - Rasterizer: 1 tri in, 0-N fragments out
 - Ray tracer: 1 hit in, 0-N secondary/shadow rays out
 - Load imbalance
Pipelines can cope with imbalance

• Re-balance load between stages
 – Buffer up results for next stage

• Optimize for locality
 – Specialized inter-stage FIFOs
 – On-chip caches, busses or scratchpads
Host/GPU pipeline

- Graphics command stream
 - Host packs, GPU consumes in parallel

- Distribute pack work across N host cores
 - Common technique in console graphics
 - Will eventually translate to desktop

Host:

GDP:

... Prepare Frame N Prepare Frame N+1 Prepare Frame N+2 ...

... Render Frame N-1 Render Frame N Render Frame N+1 ...
Build your own pipeline?

- Sounds simple
 - Pick per-stage kernels, wire up dataflow
- Challenging in practice
 - Scheduling stages to cores
 - Bounding intermediate storage
- Active area of research
 - See Stanford GRAMPS for a recent effort
Task Parallelism
Key Idea

- Achieve scalability for heterogeneous and irregular work by expressing dependencies directly

- Lightweight cooperative scheduling
Why tasks?

- Start with sequential workload
Why tasks?

- Identify data- and pipeline-parallel steps
Why tasks?

- Identify data- and pipeline-parallel steps
- Assume perfect scaling
Why tasks?

- Cost now dominated by sequential part
 - The part not suited to data- or pipeline-parallelism
- Oh yeah... that's just Amdahl's Law
Using tasks

• If we know dependencies between the steps
Using tasks

- If we know dependencies between the steps
- We can distribute the work across cores
 - Respecting the dependencies
Finite # of cores

- It looks more like this
 - Multiple kinds of work fill in the “cracks”
Task systems

• Standard practice for PS3 games
 – Gaining currency on other consoles, desktop

• One worker thread per HW context
 – Cooperative scheduling
 – Pull tasks from an incoming queue
 – Load balance using “work stealing” [Cilk]
Task granularity

- Coarse-grained tasks easy to identify
- Can schedule poorly
 - Coarse-grained dependencies
 - “Bubble” waiting for predecessor to clear
Task granularity

- Fine-grained tasks pack well
- More scheduling overhead
 - Tune task size to strike a balance
Tasks take-away

• Can’t write sequential app with parallel pieces
 – Amdahl’s Law will bite you every time
• Must involve parallelism from the top down

• Task systems
 – Handle the code that won’t fit other models
 – Heterogeneous, irregular
 – Dynamically generated work, dependencies
 – Provide scalability and load balancing
Composition
Picking the right tools

• No one model is best for all apps
 – Or even all parts of one app

• Real-world parallel apps use combinations
 – Case in point: the graphics “pipeline”
 – Pipeline-parallel buffering between stages
 – Programmable stages run data-parallel
 – Task-parallel sharing of shader cores
Data Parallelism

• Strengths
 – Good utilization of throughput architecture
 – Implicit use of SIMD/SIMT
 – Implicit memory latency hiding

• Weaknesses
 – Works best for large, homogeneous problems
 – Work efficiency drops with irregularity
Pipeline Parallelism

- **Strengths**
 - Copes with variable data amplification
 - Can exploit producer-consumer locality

- **Weaknesses**
 - Best scheduling strategy workload-dependent
 - No general-purpose tools for current HW
Task Parallelism

• **Strengths**
 - Copes well with irregular/dynamic problems
 - Viable parallelism approach for a whole app

• **Weaknesses**
 - No automatic support for latency-hiding
 - Must explicitly write for SIMD
Summary

• Data-, pipeline- and task-parallelism
 – Three proven approaches to scalability
 – Applicable to many problems in graphics

• Look for these to surface as we discuss
 – Tools
 – Architectures
 – Algorithms
Acknowledgements

- EA DICE

- Co-organizers: Jason, Justin, Mark

- Stanford: Kayvon Fatahalian

- Intel: Aaron Lefohn, Andrew Lauritzen, Tim Mattson
Questions?