

Next-Generation Graphics on
Larrabee

Tim Foley
Intel Corp

Motivation

•  “The killer app for GPGPU is graphics”

•  We’ve seen
–  Abstract models for parallel programming
–  How those models map efficiently to Larrabee

•  Now you use those tools to implement the future
of graphics

Outline

•  A software rendering pipeline
–  Current-generation graphics
–  Optimized for Larrabee

•  Extensions to that pipeline
–  A litany of ideas to explore
–  Only a little time spent on each

Software Rendering

Binning/tiling/chunking

•  Parallelize and load-balance pipeline

•  Color/depth/stencil buffers stay in L2
–  Eliminates buffering between stages
–  Enables next-generation rendering approaches

•  Saves bandwidth to main memory
–  Nice benefit, but the others matter more

Binning?!

•  Not as crazy as some other tiled approaches
–  Fully compatible with existing applications

•  Each pixel works in submit order
–  No sorting of fragments
–  Each fragment does shading, stencil, Z, blend

•  Just works on pixels in a different order
–  Better parallelism, load balancing, locality
–  Graphics APIs don’t define rasterization order

How it works

•  Divide render target into tiles of pixels
–  64x64 or 128x128 are typical sizes
–  Each tile of pixels has a bin of geometry

•  Pipeline front-end
–  Hit-test triangles and tiles
–  Add triangles to overlapping bins

•  Pipeline back-end
–  Fragment shading, depth/stencil, blending
–  Tiles processed in parallel – about 80% of frame time

Front-end phase

•  Give batch of geometry to any core
–  Input assembler
–  Vertex shader
–  Tesselation, geometry shader
–  Culling, clipping
–  Rasterization

•  Place shaded tris + rasterized frags into bins

Back-end phase

•  For each bin
–  Read triangles, shaded vertices, coverage
–  Set up interpolants
–  Early depth/stencil
–  Attribute interpolation
–  Fragment shading
–  Late depth/stencil
–  Render target blending

Front-end / back-end split

•  Not set in stone (it’s all SW)
•  Some parts can move between front and back

–  Vertex shading
–  Tesselation, clipping
–  Rasterization, setup

•  Trade off computation and bandwidth
–  Different scenarios benefit from different split
–  Stencil shadows, shadow maps, post processing,

particle systems, deferred rendering, …

Specialization

•  Phase code generated on-the-fly
–  Optimized for state settings
–  Only pay for the features you use
–  Compiler can shuffle order of operations at will

•  Other GPUs also rely on “JIT” specialization
–  We just JIT our “fixed function” stages too
–  Compiles are done on Larrabee

Rasterization

•  Hierarchical recursive descent algorithm
–  Similar to Greene [1996]

•  Conceptually:
–  Find Ax+By+C=0 edge equations in 2D screen space
–  Start at 64x64 pixel chunks
–  Dice by factor of 4x4 – matches SIMD width
–  Classify each block into full, empty, or partial
–  At leaf (4x4 pixels) test sample locations

•  Sounds complex, but optimizes really well
–  In practice it all boils down to integer SIMD addition

Pipeline Extensions

“Standard” pipeline isn’t special

•  Renderer is a C/C++ program
–  Intrinsics, assembly for performance-critical loops

•  Uses the tools from my previous talk
–  Task system to distribute work to cores
–  Generate data-parallel code for front-/back-end

•  Nothing up our sleeves
–  Extended pipelines are on equal footing

Some extensions

•  Today will talk about extending
–  Render targets
–  Rasterization
–  Texturing

•  Just scratching the surface
–  Not enough time to cover it all…

Extended render targets

•  Back-end phase does
–  Fragment shading
–  Depth, stencil, blending
–  It’s all one program

•  Render target data is just sitting in L2
–  Core owns the whole tile
–  No need to synchronize

•  Maybe we can do something with that…

Programmable blending

•  Arbitrary custom blend operations
–  Read the target during fragment shading…
–  Non-linear color spaces
–  “Blend” matrices, quaternions, normals

•  Arbitrary number and type of targets
–  Just pointers to data in L2
–  Two-sided depth test (near and far)
–  More flexible deferred rendering
–  Custom antialiasing schemes

Irregular render targets

•  Who says target has to be a uniform grid?
•  Variable amount of data per-pixel

–  Per-pixel list of colors, depths, you-name-it
–  True A-buffer implementation
–  Order-independent transparency
–  Deferred rendering with transparent surfaces
–  Multi-layer shadow maps

•  Sparse render targets
–  Irregular Z buffer

Extended rasterization

•  Custom primitive types
–  Curved surfaces, B-splines, heightmaps, …

•  Conservative rasterization
•  Logarithmic, hemispherical rasterization
•  Stochastic rasterization

–  Motion blur, depth of field

•  Don’t have to give up rest of pipeline
–  No “graphics mode” and “compute mode”

Extended texturing

•  Texture units use the memory hierarchy
–  Page tables, TLBs, …
–  Generates soft fault on missing page

•  Simple answer: bring in tex data on fault
•  Better answer: use data you have on hand

–  Re-submit request with lower mip level
–  Page data in the background
–  Keep framerate consistent

While you’re at it…

•  No need to store whole texture uncompressed
•  Demand-decompress from compact format

–  JPEG and variants, PNG, SVG
–  RLE, zip, other lossless encoding

•  Demand-generate from procedural description
–  “Texture shader” to generate data

•  Demand-render from scene
–  Only render shadow/reflection texels you use

Keep the scene on Larrabee

•  Required for demand-rendered textures
–  Also lets us accelerate more of the frame

•  Animation
•  Scene traversal, culling

–  Integrate with coarse occlusion render
•  Render command generation
•  Effect physics

Integrating with the pipeline

•  Resources are just buffers in memory
–  Larrabee application can read and write
–  Bind application object as “constant buffer”

•  Graphics pipeline uses a task system
–  C/C++ apps use tasks to share cores, synchronize

•  Special “compute” mode not required
–  Process buffers with C/C++ code
–  Or use data-parallel kernel for automatic SIMD

Implementing the Future of Graphics

Software is the new Hardware

•  Larrabee
–  x86 architecture, full C/C++ support

•  Supports established scalable techniques
–  Data-parallel, task-parallel

•  Software graphics pipelines
–  Extensible, scalable rendering architecture
–  The future of programmable graphics

Acknowledgements

•  Tom Forsyth
•  Aaron Lefohn
•  Matt Pharr

Parallel Computing for Graphics:
Beyond Programmable Shading

http://sa08.idav.ucdavis.edu/
Beyond Programmable Shading

Questions?
tim.foley@intel.com

